

Scalable High-Order Finite Elements for Compressible Hydrodynamics

Tzanio Kolev

with R. Anderson, T. Brunner, J. Cerveny, V. Dobrev, A. Grayver, I. Karlin and R. Rieben

BGSIAM15, Sofia December 21, 2015

High-order finite elements are a good foundation for nextgeneration scalable multi-physics simulations

- Large-scale parallel multi-physics simulations
 - radiation diffusion
 - electromagnetic diffusion
 - compressible hydrodynamics
- Finite elements naturally connect different physics

- High-order finite elements on high-order meshes
 - increased accuracy for smooth problems
 - sub-element modeling for problems with shocks
 - bridge unstructured/structured, sparse/dense
 - FLOPs/bytes increase with the order
- Need new (interesting!) R&D for full benefits
 - meshing, discretizations, solvers, AMR, UQ, visualization, ...

8th order Lagrangian hydro simulation of a shock triple-point interaction

High-order H(curl) AMR in geophysics modeling of subsurface electric conductivity

Our scalable high-order finite element simulation pipeline

- FE research and fast application prototyping MFEM
- High-order hydrodynamics and multi-physics BLAST
- Scalable solvers for radiation, electromagnetic diffusion hypre

Compressible shock hydrodynamics

- Compressible Hydrodynamics describes flows where the density changes in response to pressure.
- This is the case in gases, or liquids with large energies and/or pressure changes.
- Many applications at LLNL/DOE, e.g. implosion in the National Ignition Facility.
- Mathematical challenges:
 - shock waves
 - handling of discontinuous solutions
 - moving meshes
 - multi-material flow
 - coupling with other physics

Laser-driven high energy-density plasma computation

Inertial Confinement Fusion

ALE Discretizations for Large-Scale Hydrodynamic Simulations

The Arbitrary Lagrangian-Eulerian (ALE) framework is the foundation of many large-scale simulation codes.

ALE Equations

Momentum Conservation: $\rho\left(\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \vec{c} \cdot \nabla \vec{v}\right) = \nabla \cdot \sigma$

Mass Conservation: $\frac{\mathrm{d}
ho}{\mathrm{d} t} + ec{c} \cdot
abla
ho = ho
abla \cdot ec{v}$

Energy Conservation: $\rho\left(\frac{\mathrm{d}e}{\mathrm{d}t} + \vec{c}\cdot\nabla e\right) = \sigma:\nabla\vec{v}$

Equation of State: $p = EOS(e, \rho)$

Equation of Motion: $\frac{\mathrm{d} \vec{x}}{\mathrm{d} t} + \vec{c} = \vec{v}$

Typical ALE approaches for shock hydro consist of:

- Lagrangian phase
 - Moving computational mesh
- Advection phase
 - Mesh optimization
 - Conservative field remap
 - Monotonicity
- Multi-material element treatment

Triple-point shock interaction problem

Traditional ALE simulation

High-order Lagrangian simulation

The BLAST code discretizes the ALE fields and geometry with high-order finite elements

BLAST – novel simulation code combining:

- High-order finite elements +
- High-order meshes +
- ALE hydrodynamics

Lagrange Phase

- Solve hydro PDEs on moving curvilinear mesh
- Continuous HO kinematics
- Discontinuous HO materials and thermodynamics
- HO extension of classical SGH

Remap Phase

- HO mesh optimization
- Field remap by solving advection in pseudo-time
- Ensure conservation and HO monotonicity

We models shock hydrodynamics using high-order FEM in both Lagrangian and Remap phases

Lagrangian phase

- mesh motion determined by physical velocity
- \star time t evolution

Remap phase

- artificial mesh motion, defining the mesh velocity
- "pseudo-time" τ evolution

Lagrangian phase $(\vec{c} = \vec{0})$

Mass Conservation:
$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho\nabla\cdot\vec{\mathbf{v}}$$

t = 0

Energy Conservation:
$$\rho \frac{\mathrm{d} e}{\mathrm{d} t} = \sigma : \nabla \vec{v}$$

Equation of Motion:
$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{v}$$

Advection phase $(\vec{c} = -\vec{v}_m)$

Momentum Conservation:
$$\frac{\mathrm{d}(
ho ec{v})}{\mathrm{d} au} = ec{v}_{m} \cdot
abla(
ho ec{v})$$

Mass Conservation:
$$\frac{\mathrm{d}\rho}{\mathrm{d}\tau} = \vec{\mathsf{v}}_{\mathit{m}} \cdot \nabla \rho$$

Energy Conservation:
$$\frac{\mathrm{d}(\rho e)}{\mathrm{d}\tau} = \vec{v}_m \cdot \nabla(\rho e)$$

Mesh velocity:
$$\vec{\mathsf{v}}_m = \frac{\mathrm{d}\vec{\mathsf{x}}}{\mathrm{d}\tau}$$

We represent different materials as high-order material indicator functions

- Mixed cells appear after remap or due to shaping
 - √ different material properties, but one velocity
- We track materials with material indicator functions:

$$\eta_k \approx \frac{V_k}{V}, \quad \sum_k \eta_k = 1, \quad 0 \le \eta_k(x, t) \le 1.$$

- ✓ Finite element functions or sub-cell point values
- ✓ High-order generalization of "volume fractions"
- Volume change is controlled by the volumetric strain

$$\beta_k \approx \frac{dV_k}{dV}, \quad \sum_k \beta_k = 1$$

- ✓ Lagrangian indicators: $\beta_k = \eta_k$
- ✓ Closure models: sub-zonal strain evolution

Lagrange phase solves a system of conservation laws in physical time using Galerkin finite elements

Material indicators

Material mass

Material eneray

Momentum

Position

Continuous Lagrange

$$\frac{d\eta_k}{dt} = (\beta_k - \eta_k)\nabla \cdot v$$

$$\int_{V} \eta_k \rho_k = \int_{V^0} \eta_k^0 \rho_k^0$$

$$\eta_k \rho_k \frac{de_k}{dt} = \eta_k \sigma_k : \nabla v$$

$$\rho \frac{dv}{dt} = \nabla \cdot \sigma$$

$$\frac{dx}{dt} = v$$

Total density

$$ho \equiv \sum_k \eta_k
ho_k$$

Material mass

$$M_k = \int_{\Omega} \eta_k \rho_k$$

Total internal energy

$$\rho \equiv \sum_{k} \eta_{k} \rho_{k} \qquad \rho e \equiv \sum_{k} \eta_{k} \rho_{k} e_{k} \qquad \sigma \equiv \sum_{k} \eta_{k} \sigma_{k}$$

Material internal energy

$$M_k = \int_{\Omega} \eta_k \rho_k \quad IE_k = \int_{\Omega} \eta_k \rho_k e_k \quad V_k = \int_{\Omega} \eta_k$$

Total stress

$$\sigma \equiv \sum_{k} \eta_{k} \sigma_{k}$$

$$V_k = \int_{\Omega} \eta_k$$

Semi-discrete Lagrange

$$\mathbf{M} \frac{\mathrm{d} \boldsymbol{\eta}_k}{\mathrm{d}t} = \mathbf{b}_k$$

$$|\eta_k \rho_k |\mathbf{J}| = \eta_k^0 \rho_k^0 |\mathbf{J}^0|$$

$$\mathbf{M_e} \frac{\mathrm{d} \mathbf{e}_k}{\mathrm{d}t} = \mathbf{F}_k^T \cdot \mathbf{v}$$

$$\mathbf{M_v} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} = -\mathbf{F} \cdot \mathbf{1}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{v}$$

HO closure model

Strong mass conservation

Dense solve

Sparse solve

Mesh update

Zonal thermodynamic mass matrix

$$(\mathbf{M}_{\mathbf{e},k})_{ij} = \int_{\Omega} \eta_k \rho_k \phi_i \phi_j$$

Global kinematic mass matrix

$$(\mathbf{M_v})_{ij} = \int_{\Omega} \rho w_j w_i$$

Generalized corner forces

$$\mathbf{F} = \sum_k \mathbf{F}_k$$

Material corner forces

$$(\mathbf{M}_{\mathbf{v}})_{ij} = \int_{\Omega} \rho w_j w_i \qquad (\mathbf{F}_k)_{ij} = \int_{\Omega} (\eta_k \sigma_k : \nabla w_i) \phi_j$$

^{*} V. Dobrev, Tz. Kolev, R. Rieben, "High-order curvilinear finite elements for Lagrangian hydrodynamics", SISC, 2012

We have developed a high-order "pseudo-time" DG advection algorithm for conservative and accurate remap

Advection-based remap

- Continuous transition in pseudo-time from the old to the new, optimized, mesh
- Preserve (discontinuous) fields in physical space while the mesh is moving

$$\frac{\partial \rho}{\partial \tau} = 0 \Leftrightarrow \frac{d\rho}{d\tau} = u \cdot \nabla \rho \qquad u = \frac{dx}{d\tau}$$

Accuracy & Conservation

Discontinuous Galerkin (DG) discretization, upwind flux

$$\frac{\partial}{\partial \tau} \int_{\Omega} \rho \psi = -\sum_{T} \int_{T} \rho u \cdot \nabla \psi + \sum_{f} \int_{f} \{\rho u \cdot n\}_{*} \llbracket \psi \rrbracket$$

- Remap by ODE integration (swept volumes)
- Order independent, no interface reconstruction

Monotonicity

- Preserve bounds, no spurious oscillations
- Enforced at degrees of freedom
- Different approaches: LSD, FCT, and OBR

Gauss-Lobatto HO basis v_x, v_y, v_z

Remap phase solves a system of advection equations in pseudo time using Discontinuous Galerkin finite elements

Material indicators

Material mass

Material eneray

Momentum

Remesh velocity

Continuous Remap

$$\frac{d\eta_k}{d\tau} = u \cdot \nabla \eta_k$$

$$\frac{d(\eta_k \rho_k)}{d\tau} = u \cdot \nabla (\eta_k \rho_k)$$

$$\frac{d(\eta_k \rho_k e_k)}{d\tau} = u \cdot \nabla (\eta_k \rho_k e_k)$$

$$\frac{d(\rho v)}{d\tau} = u \cdot \nabla (\rho v)$$

$$\frac{dx}{d\tau} = u$$

Semi-discrete Remap

$$\mathbf{M} \frac{\mathrm{d} \boldsymbol{\eta}_k}{\mathrm{d} \tau} = \mathbf{K} \boldsymbol{\eta}_k$$

$$\mathbf{M} \frac{\mathrm{d} (\boldsymbol{\eta} \boldsymbol{\rho})_k}{\mathrm{d} \tau} = \mathbf{K} (\boldsymbol{\eta} \boldsymbol{\rho})_k$$

$$\mathbf{M} \frac{\mathrm{d} (\boldsymbol{\eta} \boldsymbol{\rho} \boldsymbol{e})_k}{\mathrm{d} \tau} = \mathbf{K} (\boldsymbol{\eta} \boldsymbol{\rho} \boldsymbol{e})_k$$

$$\mathbf{M}_{\mathbf{v}} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \tau} = \mathbf{K}_{\mathbf{v}} \mathbf{v}$$

$$\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} \tau} = \mathbf{u}$$

Assembly & dense solve

Assembly & sparse solve

Remesh update

Zonal thermodynamic mass matrix

$$\mathbf{M}_{ij} = \int_{\Omega} \phi_j \phi_i$$

Thermodynamic advection matrix

$$\mathbf{K}_{ij} = \sum_{z} \int_{z} \mathbf{u} \cdot \nabla \phi_{j} \phi_{i} - \sum_{t} \int_{f} (\mathbf{u} \cdot \mathbf{n}) \llbracket \phi_{j} \rrbracket (\phi_{i})_{d} \qquad (\mathbf{K}_{\mathbf{v}})_{ij} = \int_{\Omega} \rho \, \mathbf{u} \cdot \nabla w_{j} \cdot w_{i}$$

Global kinematic mass matrix

$$(\mathbf{M_v})_{ij} = \int_{\Omega} \rho w_j w_i$$

Kinematic advection matrix

$$(\mathbf{K}_{\mathbf{v}})_{ij} = \int_{\Omega} \rho \, \mathbf{u} \cdot \nabla w_j \cdot w_j$$

^{*} R. Anderson, V. Dobrev, Tz. Kolev, R. Rieben, "Monotonicity in high-order curvilinear finite element arbitrary Lagrangian–Eulerian remap", IJNMF, 2015

High-order FE on high-order meshes lead to more robust and reliable Lagrangian simulations

High-order

Low-order SGH

Robustness

Symmetry preservation

High-order methods perform well on a variety of challenging multi-material ALE problems

Lagrangian simulations on coarse meshes with Q12-Q11 finite elements

Lagrangian simulations on coarse meshes with Q12-Q11 finite elements

Shock triple-point interaction (4 elements)

Smooth RT instability (2 elements)

Semi-discrete Lagrangian phase and its finite element numerical kernels

Lagrangian algorithm in BLAST

$$\mathbf{M}_{\mathbf{v}} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\mathbf{F} \cdot \mathbf{1}$$
$$\mathbf{M}_{\mathbf{e}} \frac{\mathrm{d}\mathbf{e}}{\mathrm{d}t} = \mathbf{F}^{\mathbf{T}} \cdot \mathbf{v}$$
$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{v}$$

Generalized force matrix

$$\mathbf{F}_{ij} = \int_{\Omega(t)} \left(\sigma :
abla ec{w}_i
ight) \phi_j$$

Kernel 1: Assembly/evaluation of the zonal corner forces:

$$(\mathbf{F}_z)_{ij} = \int_{\Omega_z(t)} (\sigma : \nabla \vec{w}_i) \, \phi_j = \sum_k \alpha_k \hat{\sigma}(\hat{\vec{q}}_k) : \mathbf{J}_z^{-1}(\hat{\vec{q}}_k) \hat{\nabla} \hat{\vec{w}}_i(\hat{\vec{q}}_k) \, \hat{\phi}_j(\hat{\vec{q}}_k) |\mathbf{J}_z(\hat{\vec{q}}_k)|$$

Kernel 2: Inversion of the (global) kinematic mass matrix:

$$(\mathbf{M}_{\mathbf{v}})_{ij} = \int_{\Omega_z} \rho \, \vec{w}_i \cdot \vec{w}_j = \sum_k \alpha_k \hat{\rho}(\hat{\vec{q}}_k) \hat{\vec{w}}_i(\hat{\vec{q}}_k) \cdot \hat{\vec{w}}_j(\hat{\vec{q}}_k) |\mathbf{J}_z(\hat{\vec{q}}_k)|$$

Kernel 1: Partial assembly and evaluation of bilinear forms

$$A = P^T G^T B^T D B G P$$

The finite element assembly/evaluation of general bilinear forms (matrices) can be decomposed into parallel, mesh topology, FE basis, and geometry/physics components:

Storage options:

- 1. A_p , A: standard global matrices (e.g. in CSR/ParCSR format)
- 2. A_z : local stiffness matrices (e.g. for high-order methods)
- 3. *D*: quadrature point data only (independent of basis order)
- 4. none: action-only evaluation (e.g. for explicit methods)

Large-scale strong scalability with partial assembly

Full assembly

BLAST Strong Scaling on Vulcan 2D Lagrangian Sedov Problem on 131,072 zones 1000 -SGH Code Q2 FEM (Assemble) 100 Q4 FEM (Assemble) Q8 FEM (Assemble) Time log10(s) 0.1 0.01 0.001 256 522 1284 1284 1286 8134 16344 31168 81348 23101 Number of cores

Quadrature-point storage only (D_E)

- p-refinement on 512×256 mesh, strong scaling down to 1 elem/core, high-order results in low order run time at 32K cores
- Newer result have much earlier cross-over point
- Quadrature-point storage in mass/corner force matrices, Jacobi preconditioning

Kernel 2: Stationary linear iteration (SLI) approximation

Lumped mass matrix in the Gauss-Lobatto basis is close to the full mass matrix.

A sequence of improving approximations:

- $B_1 = M_L^{-1}$
- $B_2 = 2M_L^{-1} M_L^{-1}MM_L^{-1}$
- ...
- $\bullet I B_n M = (I M_L^{-1} M)^n$

Properties:

- mass conserving: $1^t B_n \rho = 1^t M \rho$
- limited spread of information
- converge to exact inverse: $\lim_{n\to\infty} B_n = M^{-1}$
- equivalent to fixed numbers of stationary linear iterations: $x_n = B_n b$ is the same as $x_0 = 0, \quad x_{k+1} = x_k + M_L^{-1}(b Mx_k)$ for $k = 1, \ldots, n$.

2Drz, 2nd order ALE, PCG (left) vs SLI, n=4 (right)

Recent strong scalability on a BG/Q node with SLI

Lagrangian Sedov problem with **fixed number of DOFs** (different meshes)

BLAST has good strong scaling properties

High-order finite element kernels are well-suited for **GPU** acceleration

BLAST results on a single node of SNL's Shannon testbed

3D Q2Q1 Sedov blast on 32x32x32 mesh, timed 300 corner force calls 2GPUs: Tesla K20X, CPU: Sandy bridge E5-2670@2.6GHz, optimized Intel compiler

6 CUDA kernels, Hyper-Q, CPU-GPU transfer of vectors

^{*} T. Dong, V. Dobrev, Tz. Kolev, R. Rieben, S. Tomov, J. Dongarra, "A step towards energy efficient computing: redesigning a hydrodynamic application on CPU-GPU", IEEE PDPS, 2014

General adaptive mesh refinement on high-order curved meshes

- Non-conforming refinement for quad/hex meshes is actively developed in MFEM.
 - Implemented by generalizing G, P
 - h-refinement with fixed p
- Powerful and general:
 - any (high-order) finite element space on any (high-order) curved mesh
 - arbitrary order hanging nodes
 - anisotropic refinement
 - serial and parallel (limited)
 - independent of the physics (easy to incorporate in BLAST, etc.)
- Top: Adaptation to a shock-like solution.
- Bottom: relative AMR error for the 2D problem improves significantly with the order (approaching full h-p refinement)

Static parallel NMR, Lagrangian Sedov problem

8 cores, random non-conforming ref.

4096 cores, random non-conforming ref.

Shock propagates through non-conforming zones without imprinting

Static parallel AMR, Lagrangian shock triple-point

Anisotropic AMR aiming for "square" elements at t=5.0

Simple anisotropic AMR for high-order H1 and H(curl) problems

ZZ for (high-order) H1 problems

$$-\nabla \cdot (\rho \nabla u) = f$$
$$F = \rho \nabla u \qquad \eta_K = ||F - F_{avg}||_{L_2(K)}$$

Anisotropic version

$$(\nu_K)_{x,y,z} = \|(F - F_{avg}) \cdot J_K e_{x,y,z}\|_{L_2(K)}$$

Simple and close to using exact error

 H(curl) EM problems can really benefit from high-order AMR

- MFEM supports it "out of the box"
- Working on extending the anisotropic
 ZZ estimator to H(curl)
- Preliminary magnetostatic results:

Magnetic field magnitude in an angled pipe problem

^{*} mfem-3.1, Jan 2016

H(curl) diffusion is difficult to solve

EM diffusion modeled by second order definite Maxwell

$$\nabla \times \alpha \nabla \times E + \beta E = f \quad \mapsto \quad A_h x = b$$

Challenging due to large "near-nullspace": $\nabla \times (\nabla p_h) = 0$

Hiptmair-Xu decomposition for Nedelec elements

$$\boldsymbol{u}_h = \boldsymbol{v}_h + G_h p_h + \boldsymbol{\Pi}_h \boldsymbol{z}_h$$

The Auxiliary-space Maxwell Solver (AMS) achieves scalability through reduction to the nodal subspaces

$$B_h = R_h + G_h B_{v,h} G_h^t + \Pi_h \boldsymbol{B}_{v,h} \Pi_h^t$$
 Point smoother for AMG solver for A_h $G_h^t A_h G_h$ $\Pi_h^t A_h \Pi_h$

^{*} Tz. Kolev, P. Vassilevski, "Parallel auxiliary space AMG for H(curl) problems", JCM, 2009

AMS has been highly scalable for low-order discretizations on conforming meshes

AMS implementation in *hypre* requires minimal additional fine-grid information, that MFEM can generate and pass automatically.

- Significantly outperforms previous solvers → up to 25x speedup
- Scaled up to 125K cores (12B unknowns)
- Solves previously intractable problems

We recently applied AMS to high-order nonconforming AMR geo-electromagnetics

- In the high-order case, G_h and Π_h are more complicated and depend on the choice of H1 and H(curl) bases
 - MFEM has general objects to evaluate these in parallel
- Discrete gradient in the non-conforming case is defined by commutativity:

$$S_c(\mathbb{T}) \xrightarrow{G_{c,h}} \mathbf{V}_c(\mathbb{T})$$
 $G_{c,h} = \mathbf{R}_{\mathbf{V}} G_{nc,h} \mathbf{P}_{S}$ where $P_S \downarrow \mathbf{R}_S \qquad \mathbf{P}_{\mathbf{V}} \downarrow \mathbf{R}_{\mathbf{V}}$
 $S_{nc}(\mathbb{T}) \xrightarrow{G_{nc,h}} \mathbf{V}_{nc}(\mathbb{T})$

• Magnetotelluric application abla imes lpha
abla imes E + ieta E (with A. Grayver, ETH)

Refinement step	# DoFs	N_{iter}	\bar{N}^{CG}_{iter}
0	647 544	22	3
6	786 436	22	3
12	2 044 156	23	3
18	9 291 488	24	4

2nd order AMR for a Kronotsky volcano model with ~12K-170K cells

AMS iterations ($ar{N}_{iter}^{CG}$) for 1e-2 tolerance

^{*} A. Grayver, Tz. Kolev, "Large-scale 3D geo-electromagnetic modeling using parallel adaptive high-order finite element method", Geophysics, 2015

We are currently working on high-order radiationdiffusion and its compatible coupling with the hydro

Multi-material single group equations (Grey diffusion)

$$\begin{array}{ll} \textit{Material energy} & \eta_k \rho_k \frac{de_k}{dt} = \eta_k \sigma_k : \nabla v + c \eta_k \sigma_{p,k} (E - a T_k^4) \\ \textit{Radiation energy} & \frac{dE}{dt} + \nabla \cdot \vec{F} = -c \sum_k \eta_k \sigma_{p,k} (E - a T_k^4) - E \nabla \cdot v \\ & \frac{1}{3} \nabla E = -\frac{1}{c} \sum_k \eta_k \sigma_{r,k} \vec{F} \\ & c \mathcal{A} E - \mathcal{B} \vec{n} \cdot \vec{F} = \mathcal{C} \quad \text{on } \partial \Omega \end{array}$$

• De Rham complex: H(div) fluxes match L_2 hydro thermodynamics

$$\begin{array}{c} H(grad) \xrightarrow{\nabla} H(curl) \xrightarrow{\nabla\times} H(div) \xrightarrow{\nabla\cdot} L_2 \\ \text{"nodes"} & \text{HO MHD} & \text{HO rad-diff.} & \text{HO thermodynamics} \\ \end{array}$$

• Explicit-implicit coupling allows for generic time integration

We are currently working on high-order radiationdiffusion and its compatible coupling with the hydro

Newton step for Backward Euler slopes:

$$\mathbf{k}^{n} = \mathbf{k}^{n-1} - [\partial \mathcal{N}(\mathbf{k}^{n-1})]^{-1} \mathcal{N}(\mathbf{k}^{n-1})$$

Jacobian matrix

$$\partial \mathcal{N}(k) = \begin{bmatrix} \mathbf{M}_{\rho_{\mathbf{k}}} + \partial \mathbf{H}_{\mathbf{k}} & -c\Delta t \mathbf{M}_{\sigma_{\mathbf{k}}} & 0 \\ & \ddots & \vdots & \vdots \\ -\partial \mathbf{H}_{\mathbf{k}} & \dots & \mathbf{M} + c\Delta t \sum_{k} \mathbf{M}_{\sigma_{\mathbf{k}}} & \mathbf{D} \\ 0 & \dots & \frac{1}{3}\Delta t \mathbf{D^{T}} & \frac{1}{c} \mathbf{M_{F}} + \frac{1}{3} \mathbf{B_{n}} \end{bmatrix} \begin{bmatrix} \mathbf{k}_{\mathbf{e_{k}}} \\ \vdots \\ \mathbf{k}_{\mathbf{E}} \\ \mathbf{F} \end{bmatrix}$$

- Energies are discontinuous so their blocks can be eliminated locally
- Jacobian solve reduces to a global system for the fluxes F
- We take advantage of the scalable algebraic H(div) solver from http://www.: ADS

^{*} Tz. Kolev, P. Vassilevski, "Parallel auxiliary space AMG for H(div) problems", SISC, 2012

Initial coupled high-order radiation-hydrodynamics in BLAST: convergence, "crooked pipe"

$$T_{mat}(r,t) = T_0 \left(1 - \frac{e^{-\tau t}}{2} \cos(\omega r) \right)$$
$$E(r,t) = aT_{rad}^4 \left(1 + \frac{e^{-\tau t}}{2} \cos(\omega r) \right)$$
$$T_{rad}(r,t) = T_0 \left(1 + \frac{e^{-\tau t}}{2} \right)$$

Brunner's smooth nonlinear manufactured solution

Equation terms of similar magnitudes

High-order convergence in thick & thin limits!

Crooked pipe, Q2-Q1 simulation

- 2D advection $u_t = \mathbf{b}(\mathbf{x}) \cdot \nabla u + \gamma \Delta u$
 - Periodic mesh
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001
 - Modified MFEM example targeting DG remap in BLAST

Sequential Time Stepping

- Sharp profile is transported over 1100 time steps
- 3rd order explicit method
- 3-level XBraid hierarchy

- 2D advection $u_t = \mathbf{b}(\mathbf{x}) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001

Parallel-in-time solution

- Sharp profile is transported over 1100 time steps
- 3rd order explicit method
- 3-level XBraid hierarchy

www.llnl.gov/casc/xbraid

- 2D advection $u_t = \mathbf{b}(\mathbf{x}) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001

Parallel-in-time solution

- Sharp profile is transported over 1100 time steps
- 3rd order explicit method
- 3-level XBraid hierarchy

www.llnl.gov/casc/xbraid

- 2D advection $u_t = \mathbf{b}(\mathbf{x}) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001

Parallel-in-time solution

- Sharp profile is transported over 1100 time steps
- 3rd order explicit method
- 3-level XBraid hierarchy

www.llnl.gov/casc/xbraid

- 2D advection $u_t = \mathbf{b}(\mathbf{x}) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001

Parallel-in-time solution

- Sharp profile is transported over 1100 time steps
- 3rd order explicit method
- 3-level XBraid hierarchy
- Future Work:
 - improve convergence (relaxation, coarse-grid equations)
 - pure advection

We are developing general tools for HO mesh optimization and high-quality interpolation between meshes

We target high-order curved elements + unstructured meshes + moving meshes

High-order mesh relaxation in MFEM (neo-Hookean evolution)

Advection-based interpolation (DG pseudotime remap in BLAST)

We are developing general tools for accurate and flexible finite element visualization

Two visualization options for high-order functions on high-order meshes.

GLVis: native MFEM lightweight OpenGL visualization tool

glvis.org visit.llnl.gov

NURBS support in MFEM allows for accurate geometry description with relatively coarse meshes

NURBS meshes generated by the PMESH project at LLNL

2D mesh with 3 material attributes; the interface is represented exactly

FEM solution of the Laplace equation on a 3D NURBS mesh

High-order closure model essential for problems with vastly different materials

Total density profile of gas impact test at times t=0, 2, 4, 6, 8 and 10

Closure model enables high-resolution material representation without interface reconstruction

Material indicator function of the gas impactor at final time

* V. Tomov et al., "Multi-Material closure models for high-order finite element Lagrangian hydrodynamics", in preparation

Current and future work

- High-order finite elements show promise for scalable multi-physics ALE simulations
- Some ongoing research:
 - improve artificial viscosity, closure model and monotonicity methods
 - port and optimize our software stack for upcoming architectures
 - extend AMR to parallel DG and load balancing
 - develop solvers for partially assembled operators
 - parallelize in time (XBraid project)
- Papers and additional details:

people.llnl.gov/kolev1

Open-source finite element software:

Q4 Rayleigh-Taylor single-material ALE on 256 processors